Mapping Proprioception across a 2D Horizontal Workspace
نویسندگان
چکیده
Relatively few studies have been reported that document how proprioception varies across the workspace of the human arm. Here we examined proprioceptive function across a horizontal planar workspace, using a new method that avoids active movement and interactions with other sensory modalities. We systematically mapped both proprioceptive acuity (sensitivity to hand position change) and bias (perceived location of the hand), across a horizontal-plane 2D workspace. Proprioception of both the left and right arms was tested at nine workspace locations and in 2 orthogonal directions (left-right and forwards-backwards). Subjects made repeated judgments about the position of their hand with respect to a remembered proprioceptive reference position, while grasping the handle of a robotic linkage that passively moved their hand to each judgement location. To rule out the possibility that the memory component of the proprioceptive testing procedure may have influenced our results, we repeated the procedure in a second experiment using a persistent visual reference position. Both methods resulted in qualitatively similar findings. Proprioception is not uniform across the workspace. Acuity was greater for limb configurations in which the hand was closer to the body, and was greater in a forward-backward direction than in a left-right direction. A robust difference in proprioceptive bias was observed across both experiments. At all workspace locations, the left hand was perceived to be to the left of its actual position, and the right hand was perceived to be to the right of its actual position. Finally, bias was smaller for hand positions closer to the body. The results of this study provide a systematic map of proprioceptive acuity and bias across the workspace of the limb that may be used to augment computational models of sensory-motor control, and to inform clinical assessment of sensory function in patients with sensory-motor deficits.
منابع مشابه
Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace
Proprioceptive signals from peripheral mechanoreceptors form the basis for bodily perception and are known to be essential for motor control. However we still have an incomplete understanding of how proprioception differs between joints, whether it differs among the various degrees-of-freedom (DoFs) within a particular joint, and how such differences affect motor control and learning. We here i...
متن کاملKinematic Mapping and Forward Kinematic Problem of a 5-DOF (3T2R) Parallel Mechanism with Identical Limb Structures
The main objective of this paper is to study the Euclidean displacement of a 5-DOF parallel mechanism performing three translation and two independent rotations with identical limb structures-recently revealed by performing the type synthesis-in a higher dimensional projective space, rather than relying on classical recipes, such as Cartesian coordinates and Euler angles. In this paper, Study's...
متن کاملOn sensorimotor function and the relationship between proprioception and motor learning
Research continues to explore the mechanisms that mediate successful motor control. Behaviourally-relevant modulation of muscle commands is dependent on sensory signals. Proprioception – the sense of body position – is one signal likely to be crucial for motor learning. The present thesis explores the relationship between human proprioception and motor learning. First we investigated changes to...
متن کاملShape distortion produced by isolated mismatch between vision and proprioception.
To investigate the nature of the visuomotor transformation, previous studies have used pointing tasks and examined how adaptation to a spatially localized mismatch between vision and proprioception generalizes across the workspace. Whereas some studies found extensive spatial generalization of single-point remapping, consistent with the hypothesis of a global realignment of visual and proprioce...
متن کاملSeparation of visual and motor workspaces during targeted reaching results in limited generalization of visuomotor adaptation.
Separating visual and proprioceptive information in terms of workspace locations during reaching movement has been shown to disturb transfer of visuomotor adaptation across the arms. Here, we investigated whether separating visual and motor workspaces would also disturb generalization of visuomotor adaptation across movement conditions within the same arm. Subjects were divided into four experi...
متن کامل